How to Create a Smart City for People with Physical Disabilities?

How to Create a Smart City for People with Physical Disabilities?

A wheelchair user can easily get around in the city thanks to lowered curbs and accessible sidewalks

How to Create a Smart City for People with Physical Disabilities?

 

Why should you focus on creating a smart city for people with physical disabilities? The answer is simple: with a more connected city designed to meet their needs, you can remove accessibility barriers and foster inclusion. A smart city focuses on optimizing its services. It represents the perfect opportunity to put those who usually are more neglected at its center.

The smart city is connected to all its citizens, including those who don’t fit in society’s norms. Several digital solutions enable people with motor disabilities to better find their way in a city, to use public transportation more efficiently and to fully enjoy their environment.

Let’s see what a smart city is exactly and how it can make the lives of people with physical disabilities easier!

What is a smart city?

A smart city can be defined as an intelligent city. It uses information and communication technology (ICT) to improve its operational services. 

A smart city collects data from citizens, devices, buildings and transportation and shares it with the public to be at the service of its citizens. This represents the Internet of things (IoT).

As you can see, a smart city is a connected city: it links the city officials and services and the community so that both parties can interact more easily. Digital solutions guarantee this interaction and efficiency.

By being more connected, cities can improve traffic circulation, become more sustainable and save energy, reduce costs, promote active transport…

Shanghai is the number one smart city in the world. Its public platform “Citizen Cloud” connects its citizens to over 1,000 services. A single point of entry for residents to have access to everything the city has to offer.

How can you design a smart city fit for people with physical disabilities?

A smart city improves the everyday lives of people with physical disabilities. We just need to rethink what it can do for them. Especially in these domains:

Smart mobility

As stated earlier, getting around can be difficult for people with motor impairments. And yet, same as anybody else, they need to go to work, do their shopping, visit their friends… This means they need to use public transport, the city’s sidewalks and parking spots. 

That’s where smart mobility takes place: it consists of an intelligent transport and mobility network. It provides people with options for different modes of transport like motor vehicles, electric vehicles, autonomous vehicles, public transport, scooters, on-demand ride sharing services with Uber and Lyft…

Let’s take a closer look at some solutions for smart mobility that you can implement in your city! They may inspire you.

MaaS: a platform that lists all existing means of transportation to users. MaaS stands for Mobility as a Service. This solution provides them with the best mobility option according to their needs and traffic with real-time information. 

Different European cities use MaaS to make the getting around of their citizens easier. It has recently arrived in the United States, in the city of Pittsburgh.

Parquery: a cloud-based smart parking solution that lets drivers know where they can find a parking spot. A perfect way to decongestion traffic as too many drivers end up driving in circles to find a parking space. It provides them with real-time occupancy information. It is also a good solution for finding the parking spaces closest to your destination and reducing the walking time.

Several Swiss cities have implemented it. In the U.S., you can find Parquery in Greenville, South Carolina.

Streetco: a collaborative pedestrian GPS platform especially conceived for people with reduced mobility. It provides them with optimized routes in order to avoid itineraries where they could encounter obstacles like roadworks. People with physical disabilities can use Streetco to make sure their smart city is accessible to them.

This app can mostly be found in French cities but it has also set foot on American soil in San Francisco. 

AI for Inclusive Urban Sidewalks Project: a collaboration of G3ict (the Global Initiative for Inclusive ICTs) with Smart Cities for All and TCAT (Taskar Center for Accessible Technology) to provide the OpenSidewalks accessibility open data and the AccessMap personalized routing directions. 

This project is present in cities all over the world. An initiative that removes accessibility barriers for people with physical disabilities making sure they can enjoy their smart city.

Smart buildings

Can we have smart cities without smart buildings? Definitely not. 

Smart buildings aim at improving the comfort of their users while optimizing their management and consumption. Basically, they have the same goal as smart cities. 

They use innovative digital technologies for an user-centered approach. In this case, users with motor impairments. In a smart city, accessible smart buildings are essential for their comfort and wellbeing. 

From their conception, they need to take into account the needs of people with physical disabilities. They should adapt to them and not the other way around.

Phygital can be an interesting concept for smart buildings. It connects the physical world with the digital one to provide users with a unique interactive experience. 

What does it mean for people with physical disabilities? To put it simply, smart buildings need to follow accessibility guidelines and make sure all of their services can be easily accessed and used by people with motor disabilities.

One way of doing this is by implementing an indoor navigation app to guide their users. An app like Evelity, that we at Okeenea created. It has been specially designed for people with disabilities. 

Evelity adapts to every user’s profile. For people with physical disabilities, the app provides them with step-free routes. It favors the ones with an elevator or an access ramp to make their getting around easier. 

This wayfinding app currently equips several venues in France: the Maison Victor Hugo museum in Paris, the Luma Foundation in Arles and the Rockefeller Medical University in Lyon. 

A phygital experience can ensure the accessibility of smart buildings. People with physical disabilities use technology to enhance their mobility. This represents the purpose of every smart city: to make sure every citizen has the same quality experience. 

Find out more about phygital:

What Is a Phygital Experience and How Can It Improve the Accessibility of Your Venue?

Why is a smart city essential for people with physical disabilities?

Turning into a smart city represents the perfect opportunity for cities to be more accessible and inclusive. This makes smart cities an essential part of our modern society.

The most common disability in the U.S. is physical impairment. That’s why the number of Americans with motor impairments is so high: 39 million people. 

Disability Statistics in the U.S: Looking Beyond Figures for an Accessible and Inclusive Society

People with motor disabilities have difficulties getting around in the city: 

Damaged sidewalks, 

Lack of elevators for public transit networks, 

Inaccessible public venues, 

Lack of accessible restrooms, 

PRM parking spots…

Living in a smart city that takes into account the needs of people with physical disabilities can make a difference. Plus it can better address the Americans with Disabilities Act (ADA) to prevent any form of discrimination against them.

It’s truly up to the cities to make sure all their citizens can enjoy them. People with physical disabilities shouldn’t have to adapt to them.

A smart city designed for people with physical disabilities has many benefits for both the city and its citizens:

The smart cityPeople with physical disabilities
Collecting dataControlling their mobility
Managing its operationsGaining more access to the city
Meeting the needs of people with motor disabilitiesHaving more spontaneity in their getting around
Reducing its consumptionUsing the city’s services like everybody 
Attracting more residents and touristsHaving real-time information
Improving quality of life of all citizensKnowing what venues are accessible
Enhancing inclusionLocating accessible services (restrooms, PRM parking spots…)

Put your city on the map by creating a smart city fit for people with physical disabilities. You now have several initiatives and solutions to remove accessibility barriers once and for all.

Want to know more about conceiving barrier-free smart cities? Check out our articles:

Disability as an Innovation Driver for the Smart City 

How Can a Smart City Make Life Easier for People with Disabilities?

Creating an Accessible and Barrier-Free Society Through Inclusive Design: a Constant Renewal

Published on July 29th, 2022

media

Pedestrians crossing the street in the smart city of New York

Living in a smart city that takes into account the needs of people with physical disabilities can make a difference. (…) It’s truly up to the cities to make sure all their citizens can enjoy them. 

writer

Carole Martinez

Carole Martinez

Content Manager

stay updated

Get the latest news about accessibility and the Smart City.

other articles for you

share our article!

more articles

How to Foster Inclusive Mobility at Public Transit?

How to Foster Inclusive Mobility at Public Transit?

How to Foster Inclusive Mobility at Public Transit?You probably have heard of inclusive mobility but do you know what it actually means? For public transit all over the world, this notion gets more and more important. And more realistic to implement as many...

The Ultimate Guide to Accessible Pedestrian Signals

The Ultimate Guide to Accessible Pedestrian Signals

The Ultimate Guide to Accessible Pedestrian Signals  Table of contents What are accessible pedestrian signals?Why do cities have accessible pedestrian signals?Who are APS for?How do audible traffic signals work exactly?What is pedestrian detection?Why are...

NEVER miss the latest news about the Smart City.

Sign up now for our newsletter.

Unsubscribe in one click. The information collected is confidential and kept safe.

powered by okeenea

The French leading company

on the accessibility market.

For more than 25 years, we have been developing architectural access solutions for buildings and streets. Everyday, we rethink today’s cities to transform them in smart cities accessible to everyone.

By creating solutions ever more tailored to the needs of people with disabilities, we push the limits, constantly improve the urban life and make the cities more enjoyable for the growing majority.

Assistive Technology for People with Disabilities: Is Human Assistance Really Obsolete for Their Mobility?

Assistive Technology for People with Disabilities: Is Human Assistance Really Obsolete for Their Mobility?

A blind woman uses Evelity, an assistive technology device, to find her bearings

Assistive Technology for People with Disabilities: Is Human Assistance Really Obsolete for Their Mobility?

 

Assistive technology for people with disabilities aims at removing accessibility barriers. This represents a central element regarding their mobility. In this article, we’ll focus only on assistive technologies that make their getting around easier. But they can be found in other aspects of their life. 

When getting around or finding their bearings, assistive technology can often replace human assistance. Airports or train stations provide human assistance that users with disabilities can book to make sure their trip goes smoothly. However, there can be limits to what this service actually does. That’s where assistive technology takes place: it can offset what human assistance may lack.

What can assistive technology actually do to help people with disabilities get around with autonomy? Can navigation assistance entirely replace human assistance? Let’s figure this out!

What is assistive technology for people with disabilities and what can it do for their mobility?

Assistive technology, also called AT, refers to assistive, adaptive and rehabilitative devices designed for people with disabilities and the elderly. These groups of people encounter difficulties in activities of daily living. They may need assistance to bathe, dress, eat or get around. 

Thanks to assistive technology, they regain more autonomy and independence. For people with learning disabilities, they can use educational softwares that help them read, learn and remain organized. They consist of text readers, notetakers and organization tools.

What interests us here is assistive technology for people with disabilities and their mobility. By mobility, we mean getting around in the city, a venue or a public transportation with the most spontaneity and autonomy possible. Something they wouldn’t be able to do without assistive technology. 

Because after all, assistive technology enables people with disabilities to regain more control on their everyday life. Wheelchairs can be seen as assistive technology. Users with motor disabilities need a wheelchair to go to work or buy their groceries. We can find manual or electric wheelchairs but they’re evolving to meet the needs of their users. Some are designed to climb stairs for example. 

Depending on people’s disabilities, mobility can be more or less challenging. A blind person will encounter more difficulties where a deaf person won’t be as obstructed. How can a visually impaired person locate the exact entrance of a venue? When there’s no audio beacon and no tactile guide path, they need to be accompanied by someone or to ask a passerby for some help. A hearing impaired person will meet less difficulty as they’ll rely on pictograms or signs to reach the entrance. 

What remains important is guaranteeing a seamless mobility chain. A key notion for all types of users but that’s even more important for those with disabilities. Implementing a seamless mobility chain means that all links are connected to each other to provide accessibility all along the way.

For a blind person going to work, this means the public transit they use and its potential connection need to be accessible, from A to point C. In this case, wayfinding and navigation systems such as apps are more efficient than human assistance. They can get to their destination with more autonomy.

What types of navigation apps are part of assistive technology for people with disabilities?

84% of people with disabilities use a smartphone. That’s why assistive technology is promising to enhance accessibility and inclusion. More and more apps are created to help people with disabilities get around with more spontaneity and more independence.

Let’s take a look at navigation systems specially conceived to improve their mobility:

NaviLens: a Spanish company that uses QR codes to guide blind and visually impaired people. They just need to follow tactile guide paths and scan the QR codes with their smartphone camera for navigation instructions. For now, Barcelona’s public transit and the Murcia tram are equipped with NaviLens as well as the archaeological museum of Murcia.

NavChair: another Spanish company but for wheelchair users this time. This navigation and autopilot system enables them to avoid obstacles along their route. They can get a step-free route to make sure their needs are met.

Evelity: an indoor navigation app conceived by accessibility French company Okeenea. The app focuses on all types of disabilities. It adapts to the user’s profile. This means that wheelchair users have access to obstacle-free routes and that blind and visually impaired users have step by step instructions thanks to a screen reader. The Marseilles metro in France is equipped with Evelity and the solution is currently being tested at the JaySt-MetroTech station in New York City

Assistive technology for the mobility of people with disabilities enters into phygital experiences. Phygital is a bridge connecting the physical world with the digital one to provide users with a unique and interactive experience.

What Is a Phygital Experience and How Can It Improve the Accessibility of Your Venue?

Assistive technology follows the same guidelines as phygital: technology by itself isn’t the solution to enhance accessibility. It needs:

Physical accessibility: technology is pointless without accessible equipment within accessible venues. A wheelchair user won’t be able to use their navigation app in a venue that doesn’t have access ramps or elevators. What’s the point of using an innovative navigation app if they can’t get inside the venue?  

Users with disabilities: technology is a means to an end. The goal of assistive technology is to enhance the mobility of people with disabilities. It serves them. We need to keep in mind that the ultimate goal of assistive technology is to make their lives easier to get around. It’s not developing new technologies for the sake of it. People with disabilities need to be at the heart of assistive technology.

The combination of both elements is how assistive technology for people with disabilities gains full meaning. 

In what venues can assistive technology for people with disabilities improve their mobility? 

Now that you know that assistive technology for people with disabilities can be a true asset for their mobility, you need to ask yourself where this can be implemented. Where is it more necessary? In what places are people with disabilities struggling the most to get around? 

Basically, this defines complex venues. What’s a complex venue exactly?

It’s a very huge and busy venue with constant comings and goings. In a way, it can be compared to a maze. Complex venues may be more or less challenging for people with disabilities. 

What are their difficulties when navigating inside complex venues?

Accessing information,

Accessing services,

Locating the appropriate entry and exit,

Finding their bearings to go from one point to another,

Dealing with connections in a complex public transport system…

Complex venues are stressful for people with disabilities. Once again, in such places, maintaining a seamless mobility chain is essential. That’s what enables accessibility barriers to be removed.

Complex venues can take many forms:

Public transport like subways,

Multimodal transit centers,

Airports,

Museums,

Shopping malls,

Stadiums,

Business towers,

Colleges and universities,

Hospitals…

People with disabilities may need to use public transit everyday to go to work, to accompany their kids to school… But whether they’re familiar or not with the transit system, assistive technology like navigation apps can be useful for them. 

They benefit from assistive technology to get around in complex environments but also to:

Feel less stressed, 

Gain more time as they’ll find their way around more easily,

Remain autonomous and independent, 

Not to rely on human assistance to reach their destination,

Be in control of their mobility,

Have more spontaneity when they’re getting around,

Not to have to plan every little step they need to make,

Feel like any other person who’s going from one point to another,

Not to be discriminated against,

Not to be perceived as a minority who bothers others,

Be fully included in our society as they should always have been.

In other words, for people with disabilities, assistive technology may be synonymous with freedom. And who doesn’t like to be able to go wherever and whenever they want to? 

Navigation apps like Evelity truly improves the mobility of people with disabilities. The metro of Lille in France has also tested the app. Blind and visually impaired users were impressed with the autonomy that such assistive device enabled them to gain. 

“I felt like I wasn’t alone anymore. We find freedom because we are helped but virtually”, told Annie who is visually impaired. 

Soufiane, a blind man, stated: “I am very interested and I think that we should go beyond the metro.”

From what we gather here, an assistive device for people with disabilities means freedom of movement, the ability to get around by themselves. 

Check out all user testimonies who were guided with Evelity in the Lille metro

Such navigation apps belong in all venues where people with disabilities have difficulties to navigate. Plus in the case of Evelity, it can even become more than just a navigation app.

The Maison Victor Hugo museum in Paris, France chose Evelity to not only guide their visitors with disabilities but to provide content about the depicted works of art and Victor Hugo’s life, a famous French author. The app enables culture to be more accessible. Visitors with disabilities don’t need a tour guide to enjoy the museum. 

What about human assistance?

As you can imagine, all the mentioned complex venues usually provide human assistance with customer service agents at public transits or shopping malls, tour guides at museums or special assistance staff at airports. 

Is this type of service truly helpful for people with disabilities? Wouldn’t a navigation app be more efficient and reliable? If you manage a public transport network or a shopping mall, you need to ask yourself these questions.

What are the benefits of human assistance regarding the mobility of people with disabilities?

Who better than a human to guide another human? There’s empathy, a sense of commitment and dedication to be helpful towards vulnerable people. 

Many venues rely on such services to make sure their customers or users with disabilities are satisfied. After all, if they’re satisfied, they’re more likely to come back and spread the word as well on the quality of service they’ve received.

What are the drawbacks of special assistance services?

On paper, human assistance to guide people with disabilities sounds great but in reality, it may not suit and there are many inconveniences:

The cost of having employees dedicated to one service can be quite high for venues. Their staff could be deployed towards other services and purposes. Plus, a lot of venues outsource which can be costly as well.

The staff may not have enough training to truly meet the needs of people with disabilities. 

If that’s the case, this could be damaging for the venue’s reputation as unsatisfied customers could write bad reviews online.

There’s a lack of spontaneity for people with disabilities who need to book human assistance very early on when planning a trip. 

For a connection, they can’t just make the beginning of the trip by themselves and the rest with the help of staff members. It’s either human assistance all along the way or none at all. This restrains in a way their freedom of movement. 

Are assistive technology for people with disabilities and human assistance truly opposed? 

This could be the 1 million dollar question at this point. What matters here is meeting the needs of people with disabilities without it to be too costly or complicated to manage for venues.

So far, we’ve seen that for their mobility, people with disabilities favor autonomy and independence. But it depends on their capabilities so every person with disabilities is different. In some cases, they may prefer to apprehend a venue by themselves or in others, they may require assistance. 

This means that they need to have the choice: use assistive technology like navigation apps or request the help of a staff member to reach their destination.

Having both options available could make a difference in the way they want to control their mobility. We all like having options and not feel restrained or limited. For people with disabilities who may experience it in several aspects of their everyday lives, having the choice to use technology or to interact with an employee matters. They decide what they need and what’s best for them.

Of course, you need to apply this to your venue and to your users with disabilities: are they more comfortable using technology? Do they prefer asking for help? Is your venue a better fit for assistive devices? Are your human assistance services efficient enough?

You can directly ask what your users with disabilities think about this. They’ll be glad to be involved and think highly of your venue and services. Be aware that assistive technology for people with disabilities keeps evolving to better meet their needs so stay informed on these innovative navigation apps. 

Want to know more about assistive technology for people with disabilities and human assistance? Check out this article: 

Mobility Apps for Blind People or How Technology Can Replace Special Assistance at the Airport?

Published on July 15th, 2022

media

A person is using Evelity on the subway. They're on an escalator.

84% of people with disabilities use a smartphone. That’s why assistive technology is promising to enhance accessibility and inclusion. More and more apps are created to help people with disabilities get around with more spontaneity and more independence.

writer

Carole Martinez

Carole Martinez

Content Manager

stay updated

Get the latest news about accessibility and the Smart City.

other articles for you

share our article!

more articles

How to Foster Inclusive Mobility at Public Transit?

How to Foster Inclusive Mobility at Public Transit?

How to Foster Inclusive Mobility at Public Transit?You probably have heard of inclusive mobility but do you know what it actually means? For public transit all over the world, this notion gets more and more important. And more realistic to implement as many...

The Ultimate Guide to Accessible Pedestrian Signals

The Ultimate Guide to Accessible Pedestrian Signals

The Ultimate Guide to Accessible Pedestrian Signals  Table of contents What are accessible pedestrian signals?Why do cities have accessible pedestrian signals?Who are APS for?How do audible traffic signals work exactly?What is pedestrian detection?Why are...

NEVER miss the latest news about the Smart City.

Sign up now for our newsletter.

Unsubscribe in one click. The information collected is confidential and kept safe.

powered by okeenea

The French leading company

on the accessibility market.

For more than 25 years, we have been developing architectural access solutions for buildings and streets. Everyday, we rethink today’s cities to transform them in smart cities accessible to everyone.

By creating solutions ever more tailored to the needs of people with disabilities, we push the limits, constantly improve the urban life and make the cities more enjoyable for the growing majority.

The Ultimate Guide to Accessible Pedestrian Signals

The Ultimate Guide to Accessible Pedestrian Signals

Accessible pedestrian signals at an intersection in New York City

The Ultimate Guide to Accessible Pedestrian Signals

 

Table of contents

What are accessible pedestrian signals?
Why do cities have accessible pedestrian signals?
Who are APS for?
How do audible traffic signals work exactly?
What is pedestrian detection?
Why are pedestrian crosswalk signals important to drivers?
When should you implement accessible pedestrian signals at your crossings?
What laws and regulations do you need to follow regarding APS?
How much does the installation of audible traffic signals cost?
Who are their manufacturers?
How to design APS installations?
How to install accessible pedestrian signals?
How to plan the maintenance of your accessible pedestrian signals?
Why should you work with blind and visually impaired users?
How can blind and visually impaired pedestrians know which crossings are equipped with APS?
Accessible pedestrian signals turn into assets for the smart city
How to guarantee the safety of blind and visually impaired pedestrians after the removal of traffic lights?
Other innovative features for accessible pedestrian signals
The history of traffic lights and accessible pedestrian signals
Accessible pedestrian signals across the world

Accessible pedestrian signals revolutionized the mobility of blind and visually impaired people. Thanks to them, they can get around with autonomy and safety.

Obviously, accessible pedestrian signals need to meet requirements as stated by the ADA. In this guide, you’ll find out what you can do for your APS to be fully compliant. How do they work exactly? How to install them? When are accessible pedestrian signals necessary? What about complex crossroads?

In the United States, there are a lot of different accessible pedestrian signals systems. Here, we’ll just focus on the most recurrent and used ones in large cities.

Make the safety of your blind and visually impaired pedestrians a priority following our ultimate guide. No need to wait for the green man to dive into all the best practices to apply about accessible pedestrian signals, their setup, features, maintenance among many other information.

What are accessible pedestrian signals?

Audible traffic signals, audible pedestrian signals, acoustic signals, audible crossing indicators, accessible pedestrian signals or its acronym APS, all these expressions refer to audio devices directly implemented in traffic lights.

Their goal is to provide audio information about the WALK and DON’T WALK phases, also known as the green man and the red man, at intersections to blind and visually impaired pedestrians. 

Consequently, the audio information broadcasted can be seen as the dubbing version of the visual information other pedestrians have. 

Usually, the accessible pedestrian signals also provide vibrotactile walk indications with an arrow installed on the pushbutton. Blind and visually impaired pedestrians activate the pushbutton to trigger the APS. 

Why do cities have accessible pedestrian signals?

APS enables blind and visually impaired people to know when they can safely cross the street. Accessible pedestrian signals translate the warning lights into audio information for people with visual impairments.

Every time the APS is activated, the audio beacon indicating that the DON’T WALK phase has turned into the WALK phase can be heard. Dubbing the warning lights with a beacon is essential for the safety of pedestrians.

Pedestrian Safety: Are Your Pedestrian Crossings Safe for Visually Impaired and Blind People?

Installing accessible pedestrian signals at intersections means providing pedestrians with vision disabilities a seamless mobility chain. An important notion for all categories of pedestrians but for those with disabilities, it’s even more important.

Indeed, a seamless mobility chain enables those with vision disabilities to go from one point to another without any difficulties. This means that all the links connecting the mobility chain are accessible.

Thus, accessible pedestrian signals represent one of these links.

green man

Who are APS for?

Accessible pedestrian signals help around 12 million blind and visually impaired Americans safely cross the street. Among them, 1 million people are legally blind.

If you want to learn more about vision disabilities, these articles are meant for you:

Blindness, Low Vision, What Are the Different Forms of Visual Disability?

8 Clichés About Blind People

By better understanding the needs and difficulties of blind and visually impaired people, you’ll be able to create useful accessibility solutions.

For them, APS are key for their mobility. They rely on auditory and tactile cues to get around and cross the street. They listen for the right moment and stay the course.

With accessible pedestrian signals, they remain autonomous. This means they don’t need to be accompanied by someone to cross the street. Autonomy brings them freedom.

They’re just enjoying the city, walking at their own pace, just like everybody else.

In this article, you’ll learn every step pedestrians with vision disabilities take to cross the street:

How Do the Blind Safely Cross the Road?

How do audible traffic signals work exactly?

Actually, accessible pedestrian signals aren’t just about the act of crossing in itself. Once it’s their turn to cross the street, the continuous audio beacon enables the blind and visually impaired to reach the other side of the crossing without going off course. 

For this action, accessible pedestrian signals are extremely useful for them.

The use of pushbuttons

As we’ve seen, the pushbutton has a key role for people with a visual impairment. It enables them to activate the accessible pedestrian signals. But other pedestrians use it to signal their presence and wait for their turn to cross the street.

Blind and visually impaired pedestrians need to press the pushbutton for more than one second in order to activate the APS. They can press it a second time to hear the information again.

An accessible pedestrian signal installed with a pushbutton. The sign on the pole says: "Don’t push the button. Pedestrian crossing now automated. Wait for WALK signal before crossing".

What other activation modes can you find?

Although pushbuttons are the most common and used activation mode for accessible pedestrian signals, others exist. They all consist in on demand and remote activation:

A remote control using a radio frequency: this system is particularly used in France and other European countries.

Blind and visually impaired pedestrians use a remote control to actuate the accessible pedestrian signals as they’re getting closer to the crossing. This means they don’t need to locate it and stand at its beginning to press the pushbutton like in the U.S. This has always been the most challenging issue for blind and visually impaired people when getting around in the streets. 

No pushbutton to press also makes the lives of wheelchair users and people with fine motor challenges easier: they don’t have to use the pushbutton on a pole.

The audible traffic signals are only activated when a blind and visually impaired person requests it. This largely reduces the noise pollution in the neighborhood. 

However, with a remote control based on radio frequency, users don’t only activate the accessible pedestrian signals of the crossing they’d like to cross at but all crossings of intersections nearby. 

This can be confusing for people who rely on their hearing. How can they be sure they’re crossing at the intended intersection when several APS are actuated and they’re not familiar with their surroundings?

This disadvantage explains the need for people with visual impairments to choose which crossing to actuate.

The remote control made by Okeenea used to actuate accessible pedestrian signals in France

A remote control using Bluetooth: a wireless communication system that enables users to select which crossing to actuate. 

This represents the logical evolution of the remote control based on radio frequency. With a remote control using Bluetooth, blind and visually impaired pedestrians benefit from on demand activation of APS and the possibility of choosing the intersection.

The remote control indicates to them the street names of the intersections where they stand. Consequently, users just have to wait for the remote control to finish stating all of them. They can make the remote control repeat the message. They can press the button when the name of the intersection they need to cross is stated a second time. 

This system enables them to make sure they’re in the right place going to the right destination. It reassures them that they’re not lost. They’re in charge of their bearings. Plus, they do so with autonomy. No need to ask a fellow pedestrian to give them directions.

The remote control uses Bluetooth to actuate accessible pedestrian signals

A smartphone app: 89% of blind and visually impaired people use a smartphone in their everyday lives. That perfectly makes sense then that accessible pedestrian signals manufacturers have turned to apps to actuate their APS. 

You’ll find more information about these manufacturers in our “Who are their manufacturers?” section.

What’s important here is the innovation and use of a smartphone app by people with vision disabilities to actuate on demand the APS. Once again, they benefit from wireless activation. Plus, they can directly select the crossing they’re interested in. 

That’s the case with MyMoveo, the smartphone app we’ve developed to actuate aBeacon, our accessible pedestrian signal. The app provides users with a menu listing all the intersections which are equipped with an APS. Just like the remote control using Bluetooth, users have access to street names. 

The smartphone is an interesting device for blind and visually impaired people seeing that it’s a tool they take everywhere they go, without even thinking about it. With a remote control, they need to make sure they have it with them at all times before leaving their house.

It’s even more convenient for them to use their own smartphone, a device they’re familiar with to cross the intersection they need to. 

This system represents the most innovative way for them to actuate accessible pedestrian signals:

One device for multiple purposes,

On demand activation so no noise pollution,

Remote activation: easiest way to locate the beginning of the crossing,

Possibility to select the crossing to actuate: users can better apprehend their bearings.

The menu of the MyMoveo smartphone app that can actuate accessible pedestrian signals

Bluetooth activation with a remote control and a smartphone app is currently being tested in New York City with our aBeacon. It proves that cities need to turn to innovation to best meet the needs of their residents. 

The first user testimonies are very positive so far: blind and visually impaired people find that remote activation actually makes their lives easier. This will maybe incite cities from all over the world to focus on this technology, a technology at the service of its users. They’re at the center of it. 

The volume of the accessible pedestrian signals

How can the audio information from APS can get across the ambient sound? This can be particularly tricky for large cities. They have large and complex intersections with busy traffic and multiple means of locomotion. All of these can be more or less loud.

Knowing this, let’s keep in mind that blind and visually impaired pedestrians need to be able to easily focus on the sound broadcasted by accessible pedestrian signals. 

This is the reason why the volume of the audible traffic signals need to be set to a maximum of 5 dB louder than ambient sound. Most accessible pedestrian signals have a minimum volume of about 30 dB and a maximum one of about 90 dB.

But be aware that you need to take into account the ambient sound of the intersection you’re installing accessible pedestrian signals at. Not all intersections have the same traffic. Consequently, some may be more or less louder than others.

The volume of your APS depends on the ambient sound of the intersection when traffic is at its busiest so during rush hours. 

There can be adjustments to make during the installation of APS due to the location and sensitivity of the microphone. 

When the microphone is within the pedestrian signal head which itself is positioned further away from the curb, then the traffic volume received by the microphone isn’t as loud as pedestrians waiting to cross the street perceive it.

Other volume adjustments concern the WALK signal and the locator tones. 

Automatic volume adjustment is necessary in order to avoid noise pollution at night but also at periods of low traffic volume. 

The goal of accessible pedestrian signals is to provide audio information to blind and visually impaired to let them know when they can safely cross the street. But they can’t be too loud so as not to cover up traffic sounds. People with a visual impairment rely on ambient sound to figure out the geometry of the intersection or to stay alert in case of danger.

How Accessible Are the Audible Pedestrian Pushbuttons of Your Crossings?

The use of the vibrotactile arrow

The raised tactile arrow on the pushbutton is required on all accessible pedestrian signals. It points in the direction of travel on the crosswalk. Although this can help all types of pedestrians, the alignment information isn’t accurate enough for blind and visually impaired people.

The arrow vibrates during the WALK phase thus dubbing the audio information from the accessible pedestrian signals. The vibrotactile information is extremely useful for deafblind people.

Different APS systems in place

Cities throughout the United States use different accessible pedestrian signals. Here are a few examples of systems you can encounter:

The DON’T WALK pedestrian signal broadcasts audio information letting blind and visually impaired people know that vehicles currently have the right-of-way.

Locator tones fixed at poles so that people with a visual impairment can locate the pushbutton. Although they help blind and visually impaired users find the pushbutton and the crossing itself more easily, the noise pollution for the city and all its citizens is quite the downside of this system. Locator tones don’t have a high volume but their sound is constant.

Presence of tactile warning surface indicators at the crossing. They indicate people with vision disabilities that they’re at the verge of the pedestrian crossing.

The loudspeaker is directly integrated with the pushbutton.

The loudspeaker is located higher in the traffic lights pole.

Another difference rests in the sound of the APS. Here are the most common audio information you may encounter when the WALK sign is on:

A rapid ticking,

A beeping sound,

A chirping sound,

A speech message stating the street name such as “Sunset Boulevard, Walk sign is on to cross Sunset Boulevard”.

Let it be known that an accessible pedestrian signal that only states the intersection street name can be ambiguous. To be more effective and helpful to blind and visually impaired pedestrians, it should also say which street is actuated by the pushbutton. This type of information helps users get their bearings. They know if they’re heading in the right direction.

accessible pedestrian signals regulation in New York City

What is pedestrian detection?

According to the MUTCD (Manual on Uniform Traffic Control Devices), accessible pedestrian signals must have pedestrian detectors: either pushbuttons or passive detection devices. 

Pedestrian pushbuttons

When blind and visually impaired pedestrians, but also all pedestrians in general, intend to cross the street, pushbuttons need to be:

Within easy reach (including for wheelchair users),

Located at a mountain height of approximately 3.5 feet above the sidewalk (but no more than 4 feet),

Located near each end of the crosswalks,

Easily activated,

Unobstructed,

Positioned between 1.5 and 6 feet from the edge of the curb or pavement,

Positioned with its face parallel to the crosswalk to be used,

Obvious regarding the crosswalk they’re associated with.

You may have also seen the phrase “clear space” associated with pushbutton-integrated APS as required by the Proposed PROWAG. A clear space actually designs a surface with a slope consistent with that of the pedestrian access route. It can’t be more than 2% cross slope.

One of the issues with pushbuttons is that blind and visually impaired pedestrians may have difficulties to find the pole they’re installed on in order to press them and trigger the accessible pedestrian signals.

As for people with severe mobility impairments, they may not be able to press the pushbutton at all.

Pressing the pushbutton indicates traffic lights control that a pedestrian is waiting to cross the street and allows them to have long enough time to safely get across. 

But if blind and visually impaired pedestrians don’t have enough time to cross the entire street, an additional accessible pedestrian detector can be installed in its middle when there’s a sufficiently large reserved area for pedestrians to wait for the WALK signal. 

Passive detection devices

They can not only detect the presence of a pedestrian but also their desire to cross the street according to their position. With passive detection devices, pedestrians don’t have to find the pushbutton.

However, passive pedestrian detection devices combined with audible signals are mostly used in the United Kingdom, Australia, New Zealand and the Netherlands. 

These devices consist of sensors (piezo-electric, infrared and microwave) that can trigger the pushbutton locator tone when a pedestrian steps into the detection zone.

This type of automated pedestrian detection system can be useful:

There’s less noise pollution in the neighborhood,

Blind and visually impaired pedestrians don’t have to locate the pushbutton on the traffic lights pole,

Generally, pedestrians don’t push the button as they believe it has already been activated. Consequently, having a pedestrian detection device enables them to be detected and ask for the WALK signal without pressing the button.

Some pedestrian detection systems can handle the duration of pedestrian crossing. They can actually track the progress of a pedestrian as they cross the street in order to increase or shorten the duration of the WALK signal. 

This is valuable for people with reduced mobility such as the elderly who may need some extra time to get across the street. We all have different mobility paces so pedestrian detection devices that take into account the duration of our crossing can be seen as stress relieving. After all, thanks to them we can all take the time we need to safely cross the street. 

But one downside for blind and visually impaired pedestrians is that they may not stand within the detection zone. If that’s the case, they may be waiting for the WALK signal in vain…

New York City pedestrian safety blind people disability accessible pedestrian signals

Why are pedestrian crosswalk signals important to drivers?

Pedestrian crosswalk signals are as important to pedestrians as they are to drivers. That’s because they play a key role in assigning the right-of-way at intersections.

The right-of-way is an important notion as it regulates traffic, one of the rules of the road. It helps organize how the intersection works and is used by all categories of users (vehicles, pedestrians, cyclists…). 

Traffic lights signal the right-of-way at busy intersections. This enables all users, regardless of their category, to each have their turn to carry on on their trip. 

Now that we’ve established this, it’s essential for all parties involved to remain cautious. This means that drivers need to be alert when they’re getting close to an intersection. It can be identified thanks to its markings: its white stripes. They indicate the area where pedestrians can cross the street. 

Even when the DON’T WALK signal is on, drivers need to be cautious in case there’s a pedestrian crossing, especially if the pedestrian began to cross at the end of the WALK phase and is still crossing despite vehicles having the right-of-way.

The purpose of the crosswalk is to make sure all pedestrians can cross the street with safety. It first emerged more than 2000 years ago in the city of Pompeii. But crosswalks have taken different shapes and haven’t stopped to evolve since Antiquity.

The Crosswalk: Thousands of Years of Evolution

When should you implement accessible pedestrian signals at your crossings?

Accessible pedestrian signals are one of the enablers of a seamless mobility chain. This actually concerns everybody and not just blind and visually impaired people. The mobility chain is present every time we set foot outside of our house to go to work, to use public transportation, to visit a museum… 

Whether we have disabilities or not, we need to easily get around from point A to point C, meaning that point B needs to link the two other points. For the mobility chain to be efficient, all its links need to be reliable, safe, linked together and smooth.

But it’s true that a seamless mobility chain is even more essential for people with disabilities. Obviously, accessible pedestrian signals have a direct impact on the autonomy of blind and visually impaired pedestrians. They enable them to enjoy their city, to do so at their pace and with autonomy. 

Although it’s been proven that audible traffic signals have revolutionized the mobility of people with visual impairments, not all crossings are equipped with them. We’ll learn more in the next section but accessible pedestrian signals depend on several regulations including the Americans with Disabilities Act (ADA). States in the U.S. may not follow the same regulations.

In what situations are APS required?

Here are 4 few cases where accessible pedestrian signals are required:

In large cities APS are more numerous than in smaller cities simply because blind and visually impaired people tend to live in places where accessibility is better deployed. 

People with vision impairments can request an APS on a specific route or intersection. But first users need to know who controls the intersection among the city department of traffic engineering, the county, the state Department of Transportation and if it’s a state or federal highway. Plus each of these may have a different policy regarding APS.

Installing accessible pedestrian signals near organizations and schools for blind and visually impaired people makes perfect sense. The goal is to make these pedestrians’s lives easier by paving the way with audio information.

In a general sense, accessible pedestrian signals are necessary where non-visual indicators allowing people with vision disabilities to cross are insufficient

It’s a common misconception to think that accessible pedestrian signals aren’t necessary in calm neighborhoods. Their slow traffic supposedly poses no danger to blind and visually impaired people.

But actually, accessible pedestrian signals are needed even when traffic is rare. They make up for all the hustle and bustle busy traffic provides. Pedestrians with visual impairments rely on auditory cues to find their bearings and know when to cross. 

We’ve debunked 7 other clichés on accessibility for blind and visually impaired people.

Even if cities and states don’t follow the same regulations concerning APS, it doesn’t mean they don’t need to comply. 

New York City has been scrutinized for its lack of accessibility at its intersections for blind and visually impaired pedestrians. A federal judge has even sentenced the Big Apple to install more than 9,000 accessible pedestrian signals to make its intersections easier for people with visual impairments, people who need APS to safely cross the street. 

A solution that favors their autonomy and independence. Plus as we’ve seen, the vibrotactile arrow is also helpful for deafblind users. 

Rome wasn’t built in a day and the same holds true for the city that never sleeps. The ruling in favor of installing more APS in New York City serves as an example of accessibility and inclusion for all major cities in the States. The message is clear: no one should be left behind or, in this case, on the sidewalk.

But New York City has simultaneously launched a call for innovation to make its crossings accessible for blind and visually impaired pedestrians. 

The Department of Transportation chose us, Okeenea, and our accessible pedestrian signal aBeacon. We’re an accessibility expert company based in France.

The accessible pedestrian aBeacon fixed at pole in New York City uses a guiding sound corridor

This third generation APS can be used with or without a pushbutton. The solution adapts to cities and their users.

This means that those who prefer to actuate the accessible pedestrian signal with a pushbutton can do so. For those who’d rather have an on demand and remote activation, then aBeacon can be activated with either a remote control or a smartphone app. 

If New York residents are still testing aBeacon at a crossing in Brooklyn, the first testimonies were quite positive as Sylvain Denoncin, our CEO at Okeenea, introduced them at the European Blind Union in 2020. Blind and visually impaired people liked having several triggering tools. 

Thanks to the on demand and remote activation, this advanced accessible pedestrian signal represents a game changer for New York City and other cities. Indeed, pedestrians with visual impairments can locate the beginning of the crossing as they’re walking.

No need to struggle in finding the crossing and the pushbutton, something that has always been the most challenging issue for these pedestrians.

Plus, the activation with the smartphone app enables them to select the desired crossing according to their destination. Consequently, they can easily find their bearings without having to ask someone else.

This latest generation of APS may shape our future cities. New York City has been the first to experience it.

Take a bite out of the Big Apple’s pedestrian accessibility with our articles:

Everything You Need to Know About Accessible Pedestrian Signals Regulation in New York City

New York City Accessibility: Are Pedestrian Crossings Safe for Blind People?

And take a look at accessible pedestrian signals in other major cities in the States:

How Accessible Pedestrian Signals Can Help Chicago Be the ‘Most Inclusive City in the Nation’?

We Need to Talk About the Pedestrian Crossings of San Francisco and Their Accessibility 

In what situations do blind and visually impaired pedestrians struggle while getting around in the city?

It’s to be noted that you should take into account accessible pedestrian signals as soon as you’re conceiving new roadways infrastructures and refurbishing existing ones. 

Considering them beforehand is key to make sure you design an accessible intersection for the visually impaired of your city.

As we’re getting deeper into the rabbit hole, we realize that accessible pedestrian signals are essential for the visually impaired to get around with autonomy. That’s why their location is so important. It needs to be strategic, useful, safe and also cost effective. 

Plus by understanding the challenges the visually impaired face when they step out of their door and step foot on the sidewalk enables us to meet their needs. 

There are cases when people with vision disabilities can struggle and they are potentially dangerous for them:

Quiet cars like electric ones: they can’t hear them in the streets so they have to rely on the driver’s vigilance while crossing the street and hoping for them to avoid an accident.

Right turn of red: as motor vehicles or even bicyclists are allowed to turn red when the red light is on, once again the visually impaired need to rely on their vigilance to remain safe.

Continuous right-turn movements: as drivers are allowed to turn onto a road to continue driving instead of stopping at a light, the visually impaired may be confused by this specific lane.

Complex signal operations: huge intersections composed of different traffic signals mean that drivers are focused on the signs and not necessarily on the environment and pedestrians.

Traffic circles: this is typically the case when APS and traffic lights aren’t installed but some of them, rotundas and roundabouts, depending on their location, could use audio beacons to guide blind and visually impaired people. 

Wide streets: usually, drivers tend to speed at large streets which can endanger all pedestrians and other road users.

As you can see, crossing the street can be particularly challenging for blind and visually impaired pedestrians. Being aware of their issues will help you conceive intersections that are safer for them.

You’ll find additional information about their issues in this article:

Blind and Visually Impaired Pedestrians: What Are Their Difficulties When Crossing the Street?

A blind pedestrian reached the other side of the crossing after actuating the accessible pedestrian signals

What laws and regulations do you need to follow regarding APS?

We’ve previously mentioned the right-of-way, the MUTCD and the ADA. Now it’s time to uncover what’s behind these acronyms and dive into these regulations. 

The Americans with Disabilities Act

Enacted in 1990, the ADA aims at protecting people with disabilities against all forms of discrimination in all aspects of everyday life. Whether you’re a traffic engineer or urban planner, this means implementing accessible pedestrian signals for blind and visually impaired people to know when they can safely cross the street.

As stated in a 2004 publication by the Federal Highway of Administration (FHWA), accessible pedestrian signals are before all a means to convey information: “Implementing regulations for Title II of ADA, which covers State and local governments, also address “communications and information access”, requiring ‘effective communications’ with persons with disabilities. In the sidewalk/street crossing environment, this would include accessible pedestrian signals, markings and signage.”

The emphasis here is put on “effective communication” for blind and visually impaired pedestrians. They rely on audio information instead of visual cues like other pedestrians. 

The public right-of-way

As stated earlier, the right-of-way is part of the rules of the road. Its role is to organize the traffic to let pedestrians, bicyclists, motor vehicles and all types of active modes of transportation have their turn.

It establishes who has the right to go first and who has to wait. The right-of-way indicates who has the priority over the other one. That’s why signs, signals and markings are used. They work as traffic control devices. Of course, traffic lights and consequently accessible pedestrian signals play the same role. On busy roads, they ensure the safety of pedestrians. 

In shared streets, respecting the right-of-way is not only essential but it also guarantees all road users to feel comfortable. 

How to Make Shared Streets Truly Shared By All?

Since 2011, the Proposed Accessibility Guidelines for Pedestrian Facilities in the Public Right-of-Way, commonly known as PROWAG, make the installation of accessible pedestrian signals at all newly constructed or reconstructed intersections mandatory when they have visual pedestrian signals.

Although the ADA doesn’t require reconstructing all intersections, it does require improving accessibility for pedestrians with disabilities, including those with a visual impairment, when an intersection needs work. For newly constructed intersections, the guidelines established by the PROWAG need to be met.

The PROWAG is reviewed by the Access Board, an independent federal agency, composed of representatives from federal departments and members of the public appointed by the President. Most of these members have disabilities thus ensuring the best way to remove accessibility barriers for people with disabilities. 

The Board’s aim is to enforce accessibility laws and provide technical assistance on design in various areas (built environment, transit vehicles, medical diagnostic equipment…). Accessible pedestrian signals fall under their scope.

The PROWAG ensures the MUTCD specifications and requirements are met. 

The Manual on Uniform Traffic Control Devices

Commonly called MUTCD, this manual created by the Federal Highway Administration (FHWA), first came to life in 1935 when motor vehicles became more and more present in our lives. The United States felt the need to move in the right direction and with unity.

The Manual on Uniform Traffic Control Devices for Streets and Highways compiles indeed national standards for all traffic control devices, their installation and maintenance. Once again, this concerns signs, signals and markings. And what interests us here: accessible pedestrian signals.

It’s to be noted that the FHWA is in charge of publishing the MUTCD, updating it every 2 to 3 years. But it’s up to each U.S. state and local highway agencies to elect, implement, run and maintain all traffic control devices on all public roadways.

Several sections of the MUTCD control the installation and use of accessible pedestrian signals:

Section 4E.08 Pedestrian Detectors: “Pedestrian detectors may be pushbuttons or passive detection devices.” It also states some of the rules we’ve established in the “What is pedestrian detection?” paragraph. 

Section 4E.09 Accessible Pedestrian Signals and Detectors – General: it indicates directives concerning the installation of APS and the taking into account by traffic and roadways engineers of:

    ⊗ “Potential demand for accessible pedestrian signals;

    ⊗ A request for accessible pedestrian signals;

    ⊗ Traffic volumes during times when pedestrians might be present, including periods of low traffic volumes or high turn-on-red volumes;

    ⊗ The complexity of traffic signal phasing (such as split phases, protected turn phases, leading pedestrian intervals, and exclusive pedestrian phases); and

    ⊗ The complexity of intersection geometry.”

Section 4E.10 Accessible Pedestrian Signals and Detectors – Location: it provides precious information regarding the locations of pushbuttons:

    ⊗ “Pushbuttons for accessible pedestrian signals should be located in accordance with the provisions of Section 4E.08 and should be located as close as possible to the crosswalk line furthest from the center of the intersection and as close as possible to the curb ramp.”

    ⊗ “If two accessible pedestrian pushbuttons are placed less than 10 feet apart or on the same pole, each accessible pedestrian pushbutton shall be provided with the following features (see Sections 4E.11 through 4E.13):

        ⊗ A pushbutton locator tone,

        ⊗ A tactile arrow,

        ⊗ A speech walk message for the WALKING PERSON (symbolizing WALK) indication, and

        ⊗ A speech pushbutton information message.”

Section 4E.11 Accessible Pedestrian Signals and Detectors – Walk Indications: it indicates that “accessible pedestrian signals should have both audible and vibrotactile walk indications” but goes further:

    ⊗ “If the pedestrian signal rests in walk, the accessible walk indication should be recalled by button press during the walk interval provided that the crossing time remaining is greater than the pedestrian change interval.”

    ⊗ “Where two accessible pedestrian signals are separated by a distance of at least 10 feet, the audible walk signals on one corner are not separated by a distance of at least 10 feet, the audible walk indication shall be a speech walk message.”

    ⊗ “Audible tone walk indications shall repeat at eight to ten ticks per second. Audible tones used as walk indications shall consist of multiple frequencies with a dominant component at 880 Hz.”

Section 4E.12 Accessible Pedestrian Signals and Detectors – Tactile Arrows and Locator Tones

    ⊗ “To enable pedestrians who have visual disabilities to distinguish and locate appropriate pushbutton at an accessible pedestrian signal location, pushbuttons shall clearly indicate by means of tactile arrows which crosswalk signal is actuated by each pushbutton. Tactile arrows shall be located on the pushbutton, have high visual contrast (light on dark or dark on light), and shall be aligned parallel to the direction of travel on the associated crosswalk.”

    ⊗ “An accessible pedestrian pushbutton shall incorporate a locator tone.”

    ⊗ “Pushbutton locator tones shall have a duration of 0.15 seconds or less, and shall repeat at 1-second intervals.”

    ⊗ “Pushbutton locator tones shall be deactivated when the traffic control signal is operating in a flashing mode. This requirement shall not apply to traffic control signals or pedestrian hybrid beacons that are activated from a flashing or dark mode to a stop-and-go mode by pedestrian actuations.”

    ⊗ “Pushbutton locator tones shall be intensity responsive to ambient sound, and be audible 6 to 12 feet from the pushbutton, or to the building line, whichever is less.”

Section 4E.13 Accessible Pedestrian Signals and Detectors – Extended Pushbutton Press Features: it provides guidance on how to address features such as crossing time, audible beaconing and speech pushbutton information message resulting from an extended pushbutton press:

    ⊗ “If an extended pushbutton press is used to provide any additional feature(s), a pushbutton press of less than one second shall actuate only the pedestrian timing and any associated accessible walk indication, and a pushbutton press of one second or more shall actuate the pedestrian timing, any associated accessible walk indication, and any additional feature(s).”

    ⊗ “If additional crossing time is provided by means of an extended pushbutton press, a PUSH BUTTON FOR 2 SECONDES FOR EXTRA CROSSING TIME (R10-32P) plaque shall be mounted adjacent to or integral with the pedestrian pushbutton.

    ⊗ “Audible beaconing is the use of an audible signal in such a way that pedestrians with visual disabilities can home in on the signal that is located on the far end of the crosswalk as they cross the street.”

    ⊗ “Not all crosswalks at an intersection need audible beaconing; audible beaconing can actually cause confusion if used at all crosswalks at some intersections. Audible beaconing is not appropriate at locations with channelized turns or split phasing, because of the possibility of confusion.”

    ⊗ “Audible beaconing should only be considered following an engineering study at:

        ⊗ Crosswalks longer than 70 feet, unless they are divided by a median that has another accessible pedestrian signal with a locator tone;

        ⊗ Crosswalks that are skewed;

        ⊗ Intersections with irregular geometry, such as more than four legs;

        ⊗ Crosswalks where audible beaconing is requested by an individual with visual disabilities; or

        ⊗ Other locations where a study indicates audible beaconing would be beneficial.”

What’s important to understand is that all these laws and regulations complete one another. You need to be scrupulous to make sure you follow the proper standards regarding the installation and functioning of accessible pedestrian signals.

How much does the installation of audible traffic signals cost?

As you probably already know, the cost of accessible pedestrian signals depends on the signalized intersection itself: is it an existing intersection or a newly constructed one? How many crossings are there with visual pedestrian signals? What type of accessible pedestrian signal has been selected?

Pedestrians waiting to cross at an intersection in San Francisco

According to the New York City Department of Transportation’s program status report from 2020, the installation of APS at an intersection approximately costs $63,500, the median cost being $56,250.

Installing an accessible pedestrian signal unit on an existing pole costs around $1,700. But you need to be aware that a standard four-legged intersection needs 8 APS units: 2 per corner. This means the cost per intersection can go up to $14,000.

But this is just the minimum. If a simple “T” intersection is around $16,000, a complex intersection can reach $150,000. That was the case of Queens Boulevard in New York City.

There are certain characteristics to take into account:

The intersection is equipped with pedestrian signal poles,

The construction of additional poles,

Utilities, subway vents, sidewalk vaults…

Additional installation of traffic signal conduits or cables…

Depending on what the intersection is like, you may also have to take into consideration the necessary time for the contractor to do the work. More time for the contractor means a higher cost of installation. And of course, the work permit.

You may need to deal with several utility companies and agencies like the fire department of your city which means dedicating your time to coordinate those involved. 

All of this can increase the cost of the installation of an APS. Plus, what can really make the cost of APS quite steep is wiring them. New installations of accessible pedestrian signals at an intersection require wiring them. This means undertaking major roadway works.

This is particularly common in the U.S. and Canada since both countries favor pushbutton-integrated accessible pedestrian signals. 

In France, the cost of installing APS can be reduced. Indeed, as we saw earlier, the system used is based on radio communications with a remote control to actuate accessible pedestrian signals. The APS we’ve installed in New York City, aBeacon, follows the same system. This proved quite attractive for the Department of Transportation of the Big Apple as it significantly reduced the installation cost. 

In the future, cities will have to implement cost-effective solutions that serve both their purposes and the needs of users. Innovation can help us better address them. Even a system that’s been here since 1914 can evolve thanks to improved technology.

The accessible pedestrian signal aBeacon installed at a crossing in New York City

What funding sources can help you cover the cost of accessible pedestrian signals?

You have at your disposal many federal funds to help your city increase the safety and accessibility of its intersections. 

When designing an intersection, visual and audible signals are both taken into account to approach the entire intersection and what it entails for all types of pedestrians, including those with a visual impairment.

Here are some of the funding sources that can advance your project of pedestrian accessibility:

Federal-Aid Highway Programs National Highway System,

Surface Transportation Program (STP),

Congestion Mitigation and Air Quality Program,

Recreational Trails Program,

Federal Lands Highways Program,

National Scenic Byways Program

Urbanized Area Formula Grants,

Capital Investment Grants and Loans

Formula Program for Other Than Urbanized Area.

It’s to be noted that most federal funding sources require a 20 percent match from states or localities.

How much does an accessible pedestrian signal cost?

Depending on the manufacturer and the type of APS, an accessible pedestrian signal ranges from $700 to $1,150. For a pushbutton that activates it, its cost ranges from $150 to $1,000.

Who are their manufacturers?

As we’ve mentioned, there are several types of accessible pedestrian signals implemented in the United States. This means they have different manufacturers with different systems. Let’s take a look at them!

Polara: since 1996, this American manufacturer has equipped major cities in the US with accessible pedestrian signals: New York City, Los Angeles, Boston…

It provides ADA-compliant accessible crosswalk products: pushbuttons, APS and a smartphone app, PedApp, to activate the APS. 

Polara uses a whole team of distributors to have their products installed across North America.

EMTRAC: the EMTRAC system has more than one string to their bow. They improve traffic for first-response and transit vehicles and also help pedestrians cross safely with pedestrian detection and signaling

What interests us here is their accessibility devices for blind and visually impaired pedestrians, their Intelligent Transportation Systems (ITS) for pedestrian crossing. They’ve also developed their own app, the EMTRAC Pedestrian app for those with disabilities, regardless of their type, to recognize pedestrian signals and actuate crossing signals.

This app is both an accessible pedestrian signal detector (APSD) and an additional accessible pedestrian signal. This means users can easily detect an equipped intersection and select the crossing direction to activate.

RTB: this German company has managed to set foot in North America offering a wide range of pushbuttons and acoustic units. 

Their acoustic unit has been developed to adjust to the ambient noise in order to reduce noise pollution for residents while broadcasting the adequate information to pedestrians with visual impairments.

Novax: it designs and manufactures accessible pedestrian signals and traffic signal control systems.

Just like we did with our APS aBeacon, they’ve developed contactless solutions having in mind the COVID-19 situation. 

How Can Accessible Pedestrian Signals Become Responsive to COVID-19?

Their TouchFree Button can be activated with a simple hand-wave. Pedestrians don’t need to press the button in order to actuate the accessible pedestrian signals.

It’s equipped with gesture recognition sensors to detect if a pedestrian is hand-waving. Blind and visually impaired pedestrians can be aware their hand-wave has been taken into account. Indeed, a red LED will light up and an audible tone will also be emitted.

Campbell Company: ever since employees of the company bought it, it has now been rebranded PedSafety to show the company’s determination and commitment towards pedestrian safety.

They provide cities with pushbuttons and also two types of accessible pedestrian signals: a networked system and a range of independent systems.

Swarco: the Austrian group has implemented its systems and services on all continents. They focus on road marking, signage, urban traffic management, parking, highway and tunnel management, and public transport. 

They’ve opted for contactless pushbuttons while keeping the possibility for pedestrians to directly push them. It’s the case of TOUCH SOUND: pedestrians can either actuate the pedestrian signal with an app or with a touch key and a covered pushbutton at the bottom lid.

Blind and visually impaired pedestrians are aware of the different phases of the traffic lights thanks to LED, an integrated loudspeaker and vibration.

Okeenea: as explained earlier, we’re a French accessibility company. We’ve been developing accessible pedestrian signals for almost 30 years. We’ve invented the current APS used in France. Focusing on a user-centered approach, we’ve been conceiving accessible solutions that truly meet the needs of blind and visually impaired people.

That’s where aBeacon steps in: an APS with on demand and remote activation. Blind and visually impaired people can either use a remote control or their smartphone. But aBeacon can also be wired to the pushbutton. 

Pedestrians in New York City are currently testing our accessible pedestrian signal. They benefit from a guiding sound corridor to make sure they don’t go off course. Plus, as we’ve stated earlier the remote activation enables them to better locate the beginning of the crossing.

With such an augmented and connected accessible pedestrian signal, cities can collect data about the number of times blind and visually impaired pedestrians have actuated it. This can be useful for cities to better understand the needs of their users when getting around.

One thing we can learn from this overview of accessible pedestrian signals manufacturers is that contactless solutions are here to stay. They represent the next generation of APS in terms of innovation, safety and accessibility.

How to design APS installations?

Different factors need to be considered for you to design efficient and useful accessible pedestrian signal installations in your city. 

Some notions have been developed in the “When should you implement accessible pedestrian signals at your crossings?” section so we won’t linger over them here. But there are other general principles you need to keep in mind:

The information about the WALK signal and which crossing is being signaled needs to be unambiguous,

Avoid adding unnecessary sound in the environment whenever possible as well for residents as for blind and visually impaired pedestrians,

Make sure pedestrians with vision disabilities can hear the traffic sounds and the APS without any difficulties.

The goal when designing an accessible intersection is to alleviate any confusion the visually impaired may have, not adding some.

Usually, the same type of accessible pedestrian signal devices are installed in a city or state. For newly constructed intersections, the ADA requires them to be fully compliant with their guidelines, meaning the APS needs to meet these requirements. Standardized devices are thus favored. 

Retrofitted intersections may use APS with other features to provide unambiguous information at different intersections for the visually impaired.

boston street

What’s the perfect location to install accessible pedestrian signals?

A pushbutton-integrated accessible pedestrian signal needs to be between the edge of the crosswalk line (extended) farthest from the center of the intersection and the side of the curb ramp.

The accessible pedestrian signal should be located between 1.5 feet and 6 feet from the edge of the curb, shoulder or pavement but no further than 10 feet from the edge of the curb.

The control face and tactile arrow need to be aligned with the direction of travel on the corresponding crosswalk.

For wheelchair users to easily press the pushbutton, it needs to be located adjacent to a level all-weather surface.

The pushbutton and the speakers for the accessible pedestrian signals need to be located less than 5 feet from the edge of the crosswalk line (extended) farthest from the center of the intersection.

When two pushbuttons are installed at corners of signalized intersections, they need to be separated by a distance of at least 10 feet.

The rapid tick WALK indication is to be favored.

What can you do when the intersection doesn’t have two separated poles?

If the instructions above concern the usual and optimal installation of accessible pedestrian signals, there are of course exceptions and unusual cases.

There may be technical difficulties due to limited right-of-way, topography or locations of other important equipment in corners that prevent installing two APS on separate poles on the corner.

If you’re facing one of these situations, be reassured that you can install two APS on a single pole. But be aware that the APS features are different from the situations when APS and APS sounds are separated.

Consequently, you can have two pushbuttons on one pole without a separation of 10 feet or more. In addition, you need to follow other requirements:

Set up speech WALK messages instead of tones (MUTCD Section 4E.11, P7),

Make sure the pushbutton information messages identify the intersection and the street to cross. Blind and visually impaired pedestrians need to know the street name to listen for in the WALK message. This information helps them find their bearings MUTCD Section 4E.10, P3).

What extra features for your accessible pedestrian signals do you need to think of?

You may have heard of audible beaconing: an audible signal broadcasted from the opposite side of a crossing. This makes sure blind and visually impaired pedestrians walk straight when crossing. Indeed, this feature provides directional or wayfinding information.

Be aware that not all devices of APS have an audible beaconing. Consequently, you first need to assess if this feature is essential at the location you’re designing. 

Audible beaconing is broadcasted through an overhead speaker, that is to say from a pedhead-mounted APS. 

As for pushbutton-integrated APS, they aren’t used to provide directional information during crossing. The locator tone and the tactile arrow indicating the direction of the crossing pretty much serve this purpose.

Bear in mind that audible beaconing can be useful at large or complex intersections to guide the visually impaired throughout their course. 

Our article Why Your Accessible Pedestrian Signals Should Have a Guiding Sound Corridor? will shed light on this matter. Indeed, a guiding sound corridor shares similarities with audible beaconing.

The geometry of intersections

Blind and visually impaired people need to know the correct time and place to cross. This means that the location of the sound source and the volume of the WALK signal play a vital role. 

Depending on the geometry of an intersection, this can be more or less difficult to ensure. Let’s take a look at problematic situations regarding accessible pedestrian signals.

Unsignalized right turn lanes and splitter islands

If the APS used to cross the signalized main through lanes of the intersection is too loud, blind and visually impaired pedestrians may think the entire right turn lane is signalized. They may not realize it’s not the case seeing they’ll just hear the APS broadcasting sound information. They may cross when reaching the curb thinking the unsignalized right turn lane they’re on is signalized.

Once again, you need to refer to the MUTCD (Section 4E.11) to check the volume adjustment and the location of the APS it recommends.

The accessible pedestrian signal needs only to be heard from the location where the visually impaired pedestrian is waiting to cross and only audible for the crosswalk being signaled.

The use of audible beaconing isn’t suitable for splitter islands seeing the volume cannot be controlled precisely enough.

Signalized right turn lanes and splitter islands

In this situation, the precise location of the accessible pedestrian signals is key. They need to always be located next to the corresponding crosswalks. And again, their volume needs to be adequately adjusted. 

Indeed, at signalized crosswalks from corners to splitter islands, the signals to cross to the island may not be simultaneous with traffic movement parallel to the visually impaired pedestrian.

In this scenario, there’s a chance for the blind and visually impaired pedestrians to confuse the WALK signal for the turn lane with the WALK signal for the through lanes of the intersection.

A pushbutton-integrated accessible pedestrian signal with a locator tone is the best solution to avoid this type of confusion. The locator tone guides the pedestrians approaching the corner.

Medians

We’ve mentioned medians earlier and the fact that sometimes blind and visually impaired pedestrians only have sufficient time to cross to a median. In this situation, an additional pushbutton can be installed.

It’s highly recommended to install an APS with a locator tone on medians. Indeed, its goal is to inform pedestrians with vision disabilities there’s another button to press to cross the whole intersection. 

Furthermore, the locator tone helps them know where the median and the pushbutton are exactly.

In case the median is composed of only one accessible pedestrian signal, make sure the pushbutton has a double-ended arrow. It indicates both directions of the crossing.

However, if the two sections of the crossing have different pedestrian phases and are timed separately then you need to install two pushbutton-integrated accessible pedestrian signals. To avoid any confusion for the blind and visually impaired, they need to be separated by as much distance as possible and to be located as close to each crossing departure location as possible.

A lot of pedestrians crossing the street in Chicago

How to install accessible pedestrian signals?

What exactly do you need to install audible pedestrian signals at an intersection? Let’s see different case scenarios you may encounter.

Accessible pedestrian signals at newly constructed intersections

You can refer to the PROWAG and the MUTCD (Section 4E.08 through Section 4E.13) to ensure you follow the proper requirements regarding APS at newly constructed intersections:

Accessible pedestrian signals with pushbutton,

Audible and vibrotactile indications of the WALK signal,

WALK signal emitted by tone or speech message,

Pushbutton locator tone wherever there is a pedestrian pushbutton,

Tactile arrow indicating the direction of travel on the crossing.

At this stage, you must already be familiar with them as we’ve mentioned them earlier.

The Proposed PROWAG section on Operable Parts is even more specific as to the location of the pushbutton at newly constructed intersections: 

Maintain a clear space,

It must be level and least 2.5 feet by 4 feet at the pushbutton,

Location within specified reach ranges from clear space and

That the clear space at the pushbutton connects to or overlaps the pedestrian access route.

The goal being that the pushbutton is conveniently located near each end of the crosswalks to be easily activated and accessible.

For a wheelchair user to activate the pushbutton, it needs to be adjacent to a level all-weather surface. The route itself, from the pushbutton to the ramp, needs to be accessible and obstacle-free. 

Of course, you may face certain physical constraints. The pushbutton can be up to 10 feet from the curb if necessary when the surface is as level as possible.

The MUTCD recommends two pushbuttons on the same corner to be separated by at least 10 feet. But again, in case of physical constraints, pushbuttons can indeed be closer or on the same pole. 

Accessible pedestrian signals at existing intersections

When intersections need to be retrofitted, the ADA requires you to apply the new construction guidelines when it’s technically feasible of course. But as you know, this may depend on the project and the existing situation.

Consequently, you may be forced to vary the locations of pushbuttons but also the information provided by accessible pedestrian signals.

We’ll guide you through each stage of the project.

Focus on providing the appropriate information

But even though the intersection is going under major refurbishments and modifications, keep in mind that you need to avoid ambiguity and confusion. This means you need to make sure pedestrians know which crosswalk has the corresponding WALK indication.

Besides, the pushbutton needs to be accessible and easily activated by pedestrians with visual and mobility impairments. 

Even the slightest incorrect information can be very dangerous for the most vulnerable pedestrians. They need to rely on accurate information at all times when crossing the street. It’s key to ensure their safety.

If you need to add accessible pedestrian signals at an intersection, you need to be properly engineer the locations of:

Pushbuttons,

Tactile arrows,

Speakers.

And that’s purely because their respective roles are key to providing blind and visually impaired pedestrians with accessible and usable information.

Ask yourself the right questions

When retrofitting intersections, you may need to consider the location of existing poles and the possible addition of new poles to position the accessible pedestrian signal close to the crosswalk. 

Should an accessible pedestrian signal be installed at an existing intersection? 

How best to implement it taking into account the sidewalk environment? 

What’s the existing wiring? 

Can it match the wiring needs of the manufacturer’s accessible pedestrian signals?

Does the pushbutton comply with the MUTCD and Proposed PROWAG regarding its location?

What about the pole position?

Can the pushbuttons for two crossings on the same corner be separated by at least 10 feet?

Is the speaker closer to the corresponding crosswalk than it is to another crosswalk?

Is the pushbutton located adjacent to a level all-weather surface?

Is the pedestrian access route to the pushbutton obstacle-free?

Can the pushbutton be easily used by a wheelchair user?

Is the existing pole in a “poor” location? If yes, can a stub pole be installed? Or are other poles a better option?

Are tones or speech messages necessary depending on the pushbutton or pole location?

Be aware that if two pushbuttons need to be installed on the same pole then speech messages are indeed required for the WALK indication.

For sure, the installation designer needs to go on site and visit the intersection to better understand the issues its retrofitting may lead to: 

What poles can I use to install an accessible pedestrian signal?

Where exactly will I install it?

This type of knowledge is also helpful for manufacturers. The more information they’re going to get on the intersection, the better they’ll be able to determine the features the accessible pedestrian signal needs. 

Speaking of features, you may also need to consider audible beaconing. But as we’ve stated earlier, it may not be necessary at some intersections. Please refer to this section: “What laws and regulations do you need to follow regarding APS? | The Manual on Uniform Traffic Control Devices”.

And most of all, ask yourself if audible beaconing is the right solution for the retrofitted intersection or if it would cause too much confusion for the visually impaired.

Adjust to the situation

What can you do when you can’t install an accessible pedestrian signal at the recommended location? How can you make sure to minimize ambiguity and confusion for pedestrians?

In cases of retrofitted intersections, you have 3 options to ponder upon:

Reposition pedestrian signals and poles or add stub poles and associated conduit and wiring,

Install two accessible pedestrian signals on the same pole with speech messages,

Install speakers mounted on the pedestrian signal head for blind and visually impaired pedestrians to locate the WALK tone speakers as near to the corresponding crosswalk as possible.

Reposition pedestrian signals and poles or add stub poles

This means undertaking major refurbishment works. But this can be done more easily when adding APS is actually part of the upgrading of the curb ramp. 

It can be seen as killing two birds with one stone as this would favor visually impaired and mobility impaired pedestrians.  

For this to work, you need to position speakers and pushbuttons on poles that are located close to the crosswalk. 

Depending on the locations, adding stub poles can be quite easy. But you need to be careful about the wiring requirements. Indeed they can differ according to the jurisdictions. 

Install two accessible pedestrian signals on the same pole

As you’ve gathered by now, this situation isn’t acceptable at newly constructed intersections. Nor is it usually so at retrofitted ones. But in certain cases, this may represent your only choice.

Seeing that two pushbuttons are also on the same pole, the speakers need to be located as close as possible to the pedestrian waiting location. Follow other recommendations:

Implement a speech WALK message for the visually impaired pedestrians to know which street has the WALK indication,

Install a pushbutton information message and a tactile arrow. Both elements help pedestrians know the direction of the crosswalk associated with the pushbutton and the name of the street to be crossed.

Providing pedestrians with the name of the street through the pushbutton information message lifts any ambiguity they may have. Indeed, the name of the street broadcasted in the WALK message may be too ambiguous to those who aren’t familiar with the intersection.

Install speakers mounted on the pedestrian signal head 

In a situation where the existing pole isn’t close enough to the crosswalk location, you can install pedhead mounted speakers. Their goal is to provide pedestrians with audible information. 

This means that everything relies on the WALK information. Even when the pushbutton and the pole can’t be repositioned, pedhead mounted speakers may guide blind and visually impaired pedestrians to the crosswalk location. 

But such installation has its imperfections. Concerning tactile arrows and signs, it may not be the best location. That’s why if you implement a pushbutton, it needs to have a locator tone and a tactile arrow.

Pedhead mounted speakers can aim at 2 possible directions:

Towards the beginning of the crosswalk to help blind and visually impaired pedestrians locate it more easily,

Towards the center of the street when audible beaconing is needed to guide pedestrians while crossing.

Don’t forget to take into account the volume of the accessible pedestrian signals according to the characteristics of the intersection and the needs of people with vision disabilities who use it.

And also meteorological issues like high winds. In places where high winds are common, it’s best to mount the speakers directly to the metal pole. Indeed, speakers mounted on plastic pedhead tend to crack off when there are high winds.

Work closely with the manufacturer

You need to know the devices your manufacturer designs and engineers: features, settings, wiring… And the manufacturers you work with will also ask you to be specific about the intersections you want to install accessible pedestrian signals at. 

What kind of information does the manufacturer need to know? We have a whole list you can provide him with to best help him assess your needs regarding accessible pedestrian signals:

Type of WALK indication (tone or speech message),

Name of the street (for the speech WALK indication),

Extended button press function (if it’s necessary, make sure you also provide additional information: pushbutton information message, louder WALK indication…),

Use of vibrotactile arrow,

Use of pushbutton information message,

Text for pushbutton information message,

Information on audible, visual and/or tactile feedback of pushbutton activation,

Orientation of tactile arrow for each APS unit,

Text to be written in Braille on pushbutton or informational sign,

Type of mounted pole (wood or metal),

Location of control unit,

Settings for WALK indication volume and locator tone volume (minimum and maximum and amount over ambient for both),

Electrical operating requirements (voltage…),

Wiring requirements (number of wired, gauge…),

Operating temperature range,

Built-in WALK/DON’T WALK conflict detection,

Warranty duration and coverage,

Potential need for follow-up support and assistance from the manufacturer.

Of course, you may not need to use all of the elements above. It all depends on the intersection you’re working on.

Be aware that the drawings of the intersection may also be helpful for you and the manufacturer. You can easily visualize the crosswalks, pushbutton and speaker locations as well as the angle if you opt for pedhead mounted speakers.

Know the necessary wiring of APS devices

For pushbutton-integrated APS, you need additional wires to the pushbutton. That’s because some accessible pedestrian signals with actuation indicators may need to receive an actual signal from the controller to notify that the call has been accepted. 

But again, it depends on the manufacturer and the type of APS device so be careful about the requirements you need to meet. 

Take into account the control board of the accessible pedestrian signal

The control board can be within the APS device or mounted in the pedhead. But in other cases, it can even require a control unit mounted in the controller cabinet.

As its name suggests, the control board enables you to control the volume of the accessible pedestrian signal, its microphone and other features it may have.

Be aware that some pedheads may not have the appropriate space for you to install a control board for the accessible pedestrian signal. You can either replace them or explore one of these options:

The manufacturer can provide you with a separate case for the control board,

It’s possible for you to mount the control board in the signal controller but you need to take into account the wiring requirements.

Position the vibrotactile arrow

As you know by now, the vibrotactile arrow helps blind and visually impaired pedestrians confirm the audible WALK indication. It provides them with WALK signal information. Therefore, it’s key for pushbutton-integrated accessible pedestrian signals.

The vibrotactile arrow needs to be installed within the width of the crosswalk or very near it and near the curb line. The arrow needs to indicate the direction of the crossing. It must be oriented parallel to the direction of travel on the crosswalk. 

Depending on the device selected, you either can position the vibrotactile arrow directly when you install it on the pole or you can specify the direction of the arrow when ordering the devices from the manufacturer.

Keep in mind that the direction of the arrow depends on the pole location. That’s why knowing the topography of the intersection and all its aspects at your fingertips is important.

Adapt to the poles on the intersection

If you plan to install a pushbutton-integrated APS on a wooden pole, then you need a mounting bracket for wiring it. This bracket is to be ordered with the accessible pedestrian signal.

Seeing that nails and staples can hurt the visually impaired who run their fingers on poles to actuate the pushbutton, make sure to set up a shield for the pole area near the pushbutton. 

Focus on the microphones and speakers 

If the accessible pedestrian signal has an automatic sound adjustment feature, then it means it also has microphones. They monitor the ambient sound which permits to adjust the volume of the APS according to the sound levels they receive. 

Seeing that the microphones feed on the sound ambient of the intersection, they can’t be mounted too far from it. Otherwise, they won’t be able to properly adjust the volume levels and pedestrians won’t be able to clearly hear the WALK indication while at the curb.

As for the speakers of an accessible pedestrian signal, they are either pedhead-mounted or pushbutton-integrated. But if audible beaconing is the right feature for an intersection, you can have a speaker at the pedhead and one at the pushbutton location. This way, the audible beaconing signal is optimized.

To be more precise, in a regular case, that is to say when audible beaconing is not necessary, the speakers of a pedhead-mounted accessible pedestrian signal should point down toward the location of pedestrians waiting to cross. 

It enables them to properly hear the audible information. Plus it helps minimize noise in the neighborhood.

Get to know other types of devices

In some northwestern states, you may have encountered H-frame devices for pushbuttons. This type of device doesn’t meet the guidelines of the MUTCD as the arrow of the accessible pedestrian signal in the H-frame may not properly be oriented. Due to its design, pedestrians may have difficulties hearing the locator tone.

Be careful as to what is acceptable with H-frame devices and accessible pedestrian signals. 

Whenever you’re undertaking installation or retrofitting works, make sure to provide all categories of pedestrians with an obstacle-free and accessible route.

How to Maintain Pedestrian Accessibility When Carrying Out Street Works?

A pushbutton at a crossing with a vibrotactile arrow

How to plan the maintenance of your accessible accessible pedestrian signals?

When we reviewed the devices that compose an APS and their installation, we’ve seen this system is quite complex. Features may fail to work correctly which could endanger the lives of blind and visually impaired pedestrians. Actually, the same applies for all categories of pedestrians.

It’s up to the cities who first implemented accessible pedestrian signals to make sure these devices work. That’s why they need regular audits or checkups for the maintenance of accessible pedestrian signals.

Besides, weather conditions need to be taken into account especially after particularly harsh weather. Nothing is more important than the safety of pedestrians.

When do you need to check your accessible pedestrian signals?

Make sure you respect these guidelines:

Every 6 months,

After any repairs to the intersection (signals, poles, control units…),

After any changes to signal timing.

What should you pay attention to during these checkups?

If your accessible pedestrian signals were properly installed in the first place, of course the number of issues will consequently be low. 

But every time you check up an intersection, you need to supervise the functioning of the entire equipment.

Basically, you need to check everything that’s been installed. You can refer to the “How to install accessible pedestrian signals?” section to make sure not to dismiss anything.

There are also other problems you may encounter that don’t depend on the checklist above. Here are a few questions you may need to ask yourself:

Is the vibrotactile arrow working properly?

Is it pointing in the right direction?

Is the tone or speech message for the WALK indication delayed?

Is the pushbutton jammed or malfunctioning?

Is the ambient noise response slow? Or has it stopped responding?

The point is for all those involved to remain alert and prevent these issues or if not possible, to fix them.

For every item that composes accessible pedestrian signals, always ask yourself if they’re working the way they should be working to help the blind and the visually impaired have the appropriate information and cross the street with safety.

Why should you work with blind and visually impaired users?

The best way for implementing effective and safe accessible pedestrian signals at your intersections is to work closely with those who’ll use them every day: blind and visually impaired people

This makes sense since they’re the ones who can tell you the difficulties they encounter with certain intersections or APS devices.

As we saw earlier, people with vision disabilities can request an APS according to their route. This means they’re directly involved in the accessibility of their city. They want to be able to get around easily to go to work, shop, visit a museum…

Many local organizations for blind and visually impaired people are active. Their members know:

The ADA and all the other regulations about APS,

The difficulties encountered by blind and visually impaired pedestrians to:

    ⊗ locate the crossing,

    ⊗ push the button,

    ⊗ rely on ambient sound environment,

    ⊗ cross walking in a straight line,

    ⊗ remain vigilant while crossing the street.

Either for retrofitted intersections or new ones, working closely with organizations can make a difference. They can help you ensure that the accessible pedestrian signals truly serve their purpose. 

Cultivating honest and straightforward communication with organizations for blind and visually impaired people actually works both ways:

You implement effective APS at intersections.

You can explain to them the technical issues of some intersections that prevent you from installing standard APS devices.

Just by discussing with members of organizations can alleviate some issues. They can more easily understand your point of view and the city’s regarding an intersection. Just take the time to tell them, to explain to them what making an intersection accessible consists in.

Communication is key to fostering a good relationship with users.

A blind pedestrian is walking towards a staircase

How can blind and visually impaired pedestrians know which crossings are equipped with APS?

Speaking of communication, once you’ve installed accessible pedestrian signals at an intersection, how can users with vision disabilities know about them?

Because they’re the ones you’re implementing APS for. For you, it’s your job even if you’re committed and you want to perform well. For them, it represents the freedom to easily get around with spontaneity and autonomy. 

Seeing that cities and states spend thousands of dollars making an intersection accessible, they need to make sure their money is well spent and that their equipment is being used.

Not all intersections are equipped with accessible pedestrian signals but here’s how you can make sure pedestrians know which ones are.

Online access 

Many cities use the website of their Department of Transportation to inform pedestrians like New York City for example.

Every year, the Big Apple publishes a report online listing all APS devices and their location. Any citizen can download it including those with visual impairments. The website just needs to follow digital accessibility guidelines

This is free transparency. Blind and visually impaired people can not only check where accessible pedestrian signals are installed but they can also check how their number is increasing. 

This means that they’re aware that they can use different possible routes to activate APS and cross the street safely. And they can also check up on what their city is doing to be accessible for them. 

Many cities focus on improving inclusion and accessibility. But sometimes, it’s not always going according to plan. Or it may be going too slow in comparison to the needs of the citizens. 

New York City, one of the largest cities in the U.S., has recently been convicted of discrimination against blind and visually impaired people due to its lack of APS devices. 

Through this conviction, it’s an opportunity to conceive a city where everybody can feel included. The goal is for people with vision disabilities to fully enjoy their city and everything it has to offer.

Open data

Canadian cities have largely used open data to provide information to urban engineers, designers, public or private service providers or even citizens. 

This system isn’t common yet in the United States but it has many perks. For people with disabilities, they can know where APS are located and what areas are under construction. 

They have access to updated information related to what’s going on in their city.

Organizations

Again, local organizations for blind and visually impaired people are a great source of information. Those actively involved with the decision makers of their city can be intermediaries with people with vision disabilities.

They can help shape their city and make sure that accessible pedestrian signals continue to be installed at important intersections. And that the public knows where they’re located.

The Vision Zero approach

You may be already familiar with the Vision Zero plan as many cities in North America and in Europe have been implementing it. Its goal is to reduce the number of accidents and improve road safety.

The Vision Zero plan has many different actions to reach this goal. One of them consists in installing accessible pedestrian signals for the mobility of blind and visually impaired people.

Every action of this initiative is compiled in a report. A report that’s once again made available to the public. It’s another way for cities to inform its citizens about its accessibility level.

In just a few clicks, users with visual impairments can know where accessible pedestrian signals are located. This can help them plan their route accordingly.

Find out more with our article:

How Cities in North America Communicate Efficiently About Accessible Pedestrian Signals: Good Examples to Follow

vision zero pedestrian safety

Accessible pedestrian signals turn into assets for the smart city

Cities keep reinventing themselves and what they can do for their citizens. That’s why more and more cities turn to innovation to turn into smart cities.

Another way for them to meet the needs of their residents with disabilities and to foster inclusion. 

From the conception of a project or a neighborhood, the goal of a smart city is to put human beings at the heart of the initiative. 

A smart city fully uses information and communication technology (ICT) to conceive an environment that can sustainably develop. To put it simply, the idea with smart cities is to put technology at the service of users to improve their lives.

And what do blind and visually impaired people need to easily get around in their city? A seamless mobility chain made possible thanks to accessible pedestrian signals. 

Implementing APS means inclusive mobility for pedestrians with vision disabilities. Collecting and transmitting information on traffic flows, number of pedestrians with the use of accessible pedestrian signals can make a city smart. And at the service of some of its most vulnerable pedestrians.

If cities focus on meeting the needs of their blind and visually impaired inhabitants, then accessible pedestrian signals are strategic in turning them into smart cities.

Find out how accessibility can elevate cities to smart cities:

Disability as an Innovation Driver for the Smart City

How Can a Smart City Make Life Easier for People with Disabilities

How to guarantee the safety of blind and visually impaired pedestrians after the removal of traffic lights?

You know everything you need to properly install accessible pedestrian signals. But what happens when traffic lights are removed entirely? 

Indeed, more and more cities choose to remove them in order to promote active mobility. There are many perks to encouraging it. People use public transit, scooters or even bicycles to get around.

For blind and visually impaired pedestrians, losing a beacon such as accessible pedestrian signals can be extremely difficult:

They feel less safe, even in danger.

They have difficulties finding their bearings.

They can’t rely on another beacon like APS used to be.

They can’t properly apprehend shared streets.

They tend to avoid using a route with no APS.

What can you do as a city maker or urban planner to help them find their way despite the removal of traffic lights?

The answer lies in auditory, visual and tactile cues.

Audible signals remain essential even if accessible pedestrian signals have been removed. The city of Rouen, France has found an innovative way to help blind and visually impaired pedestrians cross the street safely despite removing traffic lights. 

It installed audio beacons at poles. They can be activated on demand by users with a remote control or a smartphone app. Flashing lights at the top of the poles alert motorists that vulnerable pedestrians are present and want to cross.

Even if traffic lights have been removed, providing comfort to all users is essential. For people with vision disabilities, this consists in relying on tonal contrast and tactile delineator strips. 

Removing Traffic Lights vs Pedestrian Safety: a Guide to Inclusive Streets

An audio beacon set up at a pole after the removal of traffic lights in Rouen, France

There are easy systems to implement within your reach to ensure blind and visually impaired pedestrians remain safe at all times. 

Speaking of pedestrian safety, check out this article on shared streets:

How to Make Shared Streets Truly Shared By All?

You’ll see that the concept of “comfort zone” can also apply in this situation. It’s all about conceiving shared streets taking into account the needs of vulnerable pedestrians from the very beginning.

If there are no accessible pedestrian signals in shared streets, you can find some in complete streets. Its concept is similar. The difference resides in the importance given to car users. 

With complete streets, cars and public transit overcome other types of road users. But of course, pedestrians are still present including the blind and visually impaired.

That’s why accessible pedestrian signals need to be taken into consideration from the conception of a complete street.

Accessibility Toolkit: When Complete Streets Help People with Disabilities

Other innovative features for accessible pedestrian signals

Blind and visually impaired people aren’t the only ones that can be in danger when getting around by foot. The number of pedestrians having accidents keeps rising due to the overuse of smartphones that monopolize their attention. 

Pedestrians then become “smombies”, a word combining “smartphone” and “zombie”. Around 85% of Americans possess a smartphone which gives us an idea of the extent of the phenomenon. 

Accidents caused by smombies have become so frequent in the world that some cities have already undertaken drastic measures to prevent them: ban on using a smartphone while walking, sidewalks reserved for smombies, warning lights on the ground… These are just a few examples of existing initiatives. 

In France, at the Aristide Briand intersection in Mantes-la-Jolie (in the Parisian suburbs), the accessible pedestrian signals aBeacon can actually alert distracted pedestrians when they’re getting closer to the crossing. 

Thanks to the app AMY, developed by the RATP (Autonomous Parisian Transportation Administration), pedestrians are alerted with a visual notification, a sound or a vibration as soon as they’re getting ready to cross the street when the pedestrian signal is red.

The principle is simple: the speakers of the accessible pedestrian signals continuously broadcast ultrasounds throughout the entire duration of the “DON’T WALK” signal. The microphone of the smartphones equipped with the app AMY receives these ultrasounds thus permitting to alert smombies.

Consequently, accessible pedestrian signals aren’t just reserved for blind and visually impaired people but can also be used by all types of pedestrians.

The history of traffic lights and accessible pedestrian signals

You know what function accessible pedestrian signals have, who they help and how to install them. But do you know when they were invented? 

For that, traffic lights were first needed.

Get ready for a bumpy road! A road that started in 1868 in England…

The invention of traffic lights

The world’s first traffic light was installed at Parliament Square in London. It consisted of two mobile signs that were attached to pivoting arms. They were operated by a lever. A gas-lit semaphore at the top of the post made it visible by users.

After two months of service, this traffic light exploded, thus killing the police officer who manipulated the signs.

We had to wait for electricity for another shot at traffic lights. 

This time, Cleveland in the U.S. was the designated trial zone. The state used the first dual-colored traffic light in 1914.

Then in 1920, Detroit and New York set up yellow between red and green. This type of traffic light set up the norm for traffic lights throughout the world.

As we go through the years, more regulations emerged for traffic lights. In 1974, pedestrian signals as we know them now appeared: WAIT signal in red and WALK signal in green.

You can read our full article to know more about all the stages of the invention of traffic lights:

1868-2019: a Brief History of Traffic Lights

The invention of accessible pedestrian signals

Where were APS in all of this? It turns out we need to go back to Cleveland in 1914. The first traffic lights that were installed happened to emit an audio signal. 

But its purpose was to alert road users that the lights were changing as they weren’t accustomed to it yet. This means that blind and visually impaired people weren’t considered at the time.

They had to wait until 1920 to benefit from the first acoustic traffic signals. They used a bell or ringing sound to signal the green phase of the traffic lights. 

If at first audible traffic signals were installed close to schools for blind and visually impaired people, in the 1960s and 1970s they gradually spread everywhere. 

One of the major changes that occurred in the 1990s was the setting up of a button on the post to activate the acoustic traffic signals. Before that, they were constantly on, causing as you can imagine a deafening noise pollution for residents, pedestrians and road users alike.

From the very beginning, it was obvious that blind and visually impaired people struggle to locate the crossing and find the post. That’s the reason why pushbuttons had “locator beeps”. 

They can be seen as the ancestor of the locator tone. At the time though, they could only be heard close by. 

Now we have pushbuttons with a vibrotactile arrow that gives pedestrians the direction of travel and actuate accessible pedestrian signals.

But more importantly, the system keeps evolving with on demand and remote activation. We saw earlier that aBeacon represents an innovative APS system.

It can be activated with either a remote control or a smartphone app. This can answer the biggest issue of blind and visually impaired people: locating the crossing.

At Okeenea, we’ve always focused on meeting the needs of the blind and visually impaired. We’re proud to have invented the APS aBeacon and to have implemented the current accessible pedestrian signal system in France. A system that helps around 1.5 million people with visual impairments cross the street with autonomy and safety.

This enables us to take a world tour to discover what type of accessible pedestrian signals other countries use and how they work.

Accessible Pedestrian Signals (APS): a Century of Change

Accessible pedestrian signals across the world

As we saw, accessible pedestrian signals were developed the same way across many countries: a sound is emitted during the entire green phase, that is to say when pedestrians are allowed to cross the street.

But every country has its specificities.

Are Accessible Pedestrian Signals Required in Your Country?

APS in France

We mentioned it in our previous section: our company Okeenea, when it was called EO Guidage, invented accessible pedestrian signals in 1993. 

Today, France still uses this system and technology. We have become the leader of audio signage in the country. 

Their APS are composed of a circuit board connected to a radio receiver to activate them and of a speaker for sound broadcasting. 

This circuit board can directly be integrated inside the pedestrian signal or in an external control unit fixed at the traffic light pole. 

Just like with aBeacon, blind and visually impaired pedestrians can use a remote control or a smartphone app to trigger the accessible pedestrian signals.

They don’t use the pushbutton like in the United States. Consequently, they can activate the APS on demand when they’re getting closer to an intersection in order to find their bearings. 

They rely on sound information to know where the crossing begins exactly. Then, when it’s up to them to cross the intersection, the accessible pedestrian signals are on during the entire green phase. Some of the intersections have a guiding sound corridor to help them easily get across the intersection.

The pushbutton is used by other categories of pedestrians to signal their need to cross the street.

A blind woman is crossing the street in France after actuating the accessible pedestrian signals with her remote control

APS in Canada

Accessible pedestrian signals first emerged in 1980 in Canada. Because of the federal organization of the country, there are huge gaps according to the provinces.

One of the fundamental principles of the Accessible Canada Act (ACA), enacted on June 21st, 2019, is: “the right of every person to have an obstacle-free access and to a full and equal participation in society, whatever their disabilities may be”. 

But there’s no obligation regarding the installation of accessible pedestrian signals.

The city of Montreal, Quebec has 2300 intersections with traffic lights and only 200 with accessible pedestrian signals. Organizations for blind and visually impaired people have been swinging into action to increase this number.

Interested in APS in Quebec? Check out these articles:

What Are the Regulations Concerning APS in Montreal?

Is Montreal a Fit City for Blind People to Live In?

France vs Quebec: How Do Accessible Pedestrian Signals Work Across the Atlantic?

The “Guidelines for the Understanding, Use and Implementation of Accessible Pedestrian Signals”, published in 2008, describes the technical characteristics and the installation requirements of accessible pedestrian signals at traffic lights.

Most of the APS installed in Canada work permanently. When the pedestrian signal turns green, a melody is emitted throughout the entire phase pedestrians are crossing. 

However, this system tends to disappear in aid of on demand activation in order to reduce noise pollution.

The accessible pedestrian signals that are activated broadcast a short, regular and permanent localization beep. This beep enables visually impaired people to locate the pushbutton in order to actuate the auditory cue on the green phase. 

Usually, you just need to briefly press it or press it down until the confirmation beep is emitted.

According to the Canadian guidelines, accessible pedestrian signals must emit a melody when the pedestrian signal is green. When the pedestrian signal is red and during the pedestrian clearance, most of the signals remain silent. 

The green signal is identified with a bell on the East-West lines and with a cuckoo sound on the North-South lines.

For large crossings, the sound is broadcasted in turns from both sides of the crossing so that a visually impaired person can keep walking straight. 

A speech message can be broadcasted from the pushbutton during the DON’T WALK signal. It indicates the street name and eventually provides information about the geometry of the intersection to make its crossing easier. This feature is optional. 

Other indications can be added in order to improve the information and make blind and visually impaired people find their bearings more easily:  

A sign with the instructions for the accessible pedestrian signals,

A tactile arrow with the direction of travel of the crossing,

The street name in Braille and raised letters,

A model with the number of lanes, the traffic directions, the direction of curbs and the presence of traffic islands. 

Find out more about accessible pedestrian signals at Canada:

How Do Blind People of Toronto Cross the Street Safely?

[INFOGRAPHIC] How Can the City of Ottawa Improve Its Accessibility with APS?

APS in Montreal accessibility

APS in the United Kingdom

We saw that the first traffic light was invented in London but its outcome was unfortunately dramatic. 

The United Kingdom and England in particular has come a long way since this event.

More than 6,000 accessible pedestrian signals are implemented in London to help around 250,000 blind and visually impaired pedestrians get around in the city. 

They can benefit from red tactile blister paving at controlled crossings (zebras, puffins, signalized junctions). At uncontrolled crossings, any color can be used as long as it contrasts from the surface. 

Blind and visually impaired pedestrians in the UK also use pushbuttons to actuate the accessible pedestrian signals. The pushbutton is always located on the right side of the crossing waiting area. 

Indeed, pedestrians with visual impairments are taught to look for a pushbutton on their right.

They can encounter two accessible pedestrian signals and one standard tactile signal: the standard “bleeper” when all cars are stopped at an intersection and the “bleep and sweep” signal with the tactile cone at complex intersections.

According to the Transport for London (TfL), “all of London’s pedestrian crossings are accessible, with tactile paving, audible signals and/or rotating cones on the pushbutton units”.

Find out more about London’s take on pedestrian safety:

London’s Policy for Accessible Pedestrian Crossings

London’s Accessible Pedestrian Crossings: What Does the Law Say?

If during a trip to London, a Londoner mentions a Zebra crossing when giving you directions, that’s perfectly normal. That’s just what they call a marked crosswalk with white stripes. So watch out for the Zebra!

The United Kingdom actually uses animal names for 4 other of their formal pedestrian crossings: Puffin, Pelican, Toucan and Pegasus crossings.

APS in Japan

Accessible pedestrian signals in Japan were developed in the 1960s. At the beginning of the 2000s, 10,570 intersections were equipped with accessible pedestrian signals out of 170,000.

Most of the accessible pedestrian signals have a speaker integrated into the pedestrian signal that emits a sound during the green phase. Different sounds are used according to the cities. While walking, you can hear birdsongs or various little melodies. 

Some APS broadcast a speech message indicating the street name. The variety of the sounds used is sometimes confusing for users. The national guidelines recommend alternating the accessible pedestrian signal on either side of the crossing. This alternation enables blind and visually impaired pedestrians to clearly identify the path of the crosswalk.

The pedestrian clearance can be indicated with a rapid audible signal or with a completely different sound.

For intersections that work with an exclusive phase for pedestrians, the accessible pedestrian signals are continuous. They usually are stopped from 8pm to reduce noise pollution for the residents. 

However, with intersections that don’t use a phase for pedestrians, the APS are actuated with a pushbutton. The actuation of the pushbutton extends in some cases the duration of the green phase for pedestrians.

In order to limit noise pollution issues, the activation system with radio transmitter or infrared has largely been developed since the beginning of the 2000s. The current system also permits to locate bus stops and to get information about timetables and traffic conditions.

Pedestrians crossing the street in Japan

APS in Australia

Accessible pedestrian signals in Australia have been developed from the 1980s. They are installed in zones where traffic is dense as a priority. 

The APS are actuated with a pushbutton located on the traffic lights pole. The poles are put up at direct proximity of the crosswalks, at the opposite of the middle of the crossing. The speakers are turned towards the crossing line. The alignment of the poles, associated with the direction of the speakers, creates a guiding sound corridor.

The casing with the pushbutton is equipped with a tactile arrow pointing towards the direction of the crossing. It also vibrates when the pedestrian signal turns green. The pushbutton emits a location beep that enables blind and visually impaired pedestrians to locate it.

The volume of the indications is subjugated to the ambient sound. A sound at the beginning of the green phase is emitted at 14 dB(A) above the volume of the sound indicating the green phase. 

The big advantage of the Australian accessible pedestrian signals for visually impaired pedestrians is their automatic setting up on the external line of the crosswalk, between 0,50 m and 1 m of the curb. This helps pedestrians locate the APS and improves their trajectory all along the crossing thanks to the direction of the sound.

Check out what Australia’s neighbor has implemented for their blind and visually impaired pedestrians:

City of Christchurch in New Zealand Sets Out Good Example to Help Blind People Cross the Street Safely

APS in Sweden

The accessible pedestrian signals appeared in Sweden in the 1960s and have been developed a lot in city centers. In areas less populated, their installation depends on the request of users. 

In Sweden, there’s no regulation concerning the audible pedestrian signals. However, there’s a certain cohesion between the systems installed on the territory. 

Most Swedish APS emit a regular tick-tock that speeds up during the pedestrian green phase. This sound is continuously broadcasted in order to both locate the pole and get information about the color of the traffic lights. 

Usually, pedestrian signals are located on the external line of the crosswalk, at the opposite of the middle of the crossing, at around 0,5 m of the curb.

The volume is adapted to the ambient sound. Most crossings are short, separated with pedestrian islands automatically equipped with pedestrian signals. A tactile arrow located on the pole indicates the direction of the crossing. The direct proximity of the pole with the crosswalk, always on the same side, enables users to clearly make out the source of the pedestrian signal and to cross without any ambiguity.

APS in Denmark

In Denmark, accessible pedestrian signals can mostly be found in city centers and business districts. In less frequented areas, they’re installed at the request of organizations for visually impaired people. 

Denmark’s particularity is that the country has a lot of very busy bikeways. They often are slightly raised compared to the pavement. Specific audible signals are installed to cross bikeways. 

Traditionally, the audible signal is broadcasted with a speaker located at a height of approximately 1 m. But since the 2000s, more and more accessible pedestrian signals are equipped with a pushbutton that can be found thanks to a locator tone and with a speaker up high, turned towards the line of the crosswalk. 

There’s a national regulation that defines the technical characteristics of accessible pedestrian signals. The sound indicating that pedestrians can cross the street looks like the locator tone but it’s 5 times faster. Its volume is automatically subjugated to the ambient sound. According to the norm, the locator tone must be heard at 3 m of the pole.

Having a coherence for the setting up of the poles is essential in Denmark. They can’t be located at more that 0,6 m of the curb and at more than 0,3 m of the external line of the crosswalk. 

If there are no visual indicators at this location, specific poles for the accessible pedestrian signals are installed to make sure blind and visually impaired pedestrians can find their bearings.

Like in Sweden, a simplified tactile map of the crossing is usually available on the traffic lights pole and an in relief bar indicates the direction of travel.

An intersection equipped with traffic lights in Denmark

Accessible pedestrian signals provide autonomy and foster inclusive mobility for blind and visually impaired pedestrians. Thanks to them, people with visual impairments can cross the street with safety. It’s not just about crossing when the WALK signal is on and is dubbed with audio information. It consists in being able to get around freely in their city to fully enjoy it. Consequently, your role is key to adequately install APS in your city. You now know everything there is to know about their regulations and their functioning to implement an effective audio information system. 

Essential source:

Accessible Pedestrian Signals | A Guide to Best Practices

Updated on September 23rd, 2022 | Published on July 1st, 2022

media

A crosswalk in New York City

It’s a common misconception to think that accessible pedestrian signals aren’t necessary in calm neighborhoods. […] But actually, accessible pedestrian signals are needed even when traffic is rare. They make up for all the hustle and bustle busy traffic provides. Pedestrians with visual impairments rely on auditory cues to find their bearings and know when to cross.

writer

Carole Martinez

Carole Martinez

Content Manager

stay updated

Get the latest news about accessibility and the Smart City.

other articles for you

share our article!

more articles

How to Foster Inclusive Mobility at Public Transit?

How to Foster Inclusive Mobility at Public Transit?

How to Foster Inclusive Mobility at Public Transit?You probably have heard of inclusive mobility but do you know what it actually means? For public transit all over the world, this notion gets more and more important. And more realistic to implement as many...

The Ultimate Guide to Accessible Pedestrian Signals

The Ultimate Guide to Accessible Pedestrian Signals

The Ultimate Guide to Accessible Pedestrian Signals  Table of contents What are accessible pedestrian signals?Why do cities have accessible pedestrian signals?Who are APS for?How do audible traffic signals work exactly?What is pedestrian detection?Why are...

NEVER miss the latest news about the Smart City.

Sign up now for our newsletter.

Unsubscribe in one click. The information collected is confidential and kept safe.

powered by okeenea

The French leading company

on the accessibility market.

For more than 25 years, we have been developing architectural access solutions for buildings and streets. Everyday, we rethink today’s cities to transform them in smart cities accessible to everyone.

By creating solutions ever more tailored to the needs of people with disabilities, we push the limits, constantly improve the urban life and make the cities more enjoyable for the growing majority.